summaryrefslogtreecommitdiff
path: root/lessons/matematika/1-exponents/1.md
blob: 16bf26b7932876db5770bb1729edab1f96a9f2d7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
# Exponents
\\( x^n = x_1 \times x_2 \times\ \cdot\cdot\cdot\ \times x_n \\)

## Examples
* \\(2^5 = 2 \times 2 \times 2 \times 2 \times 2 = 32 \\)
* \\(5^7 = 5 \times 5 \times 5 \times 5 \times 5 \times 5 \times 5 = 78125 \\)

# Exponent Operations
## Multiplication
If an exponented number is multiplied by another exponented number, the
exponents would be summed together (instead of being multiplied)  

\\( a^x \times b^y = (a \times b)^{x + y} \\)
* \\( 10^4 \times 2^2 = (10 \times 2)^{4 + 2} = 20^6 \\)

## Division
If an exponented number is multiplied by another exponented number, the
exponents would be subtracted together (instead of being divided)  

\\( a^x \div b^y = (a \div b)^{x - y} \\)
* \\( 10^3 \div 2^4 = (10 \div 2)^{(4 - 2)} = 5^2 = 25 \\)

## Exponent
If an exponented number is exponented, multiply the exponents together.  

\\( (a^x)^y = a^{x \times y} \\)
* \\( (2^2)^3 = 2^{2 \times 3} = 2^6 = 64 \\)

# Special Exponents
Some exponents feel better than the other, and Mathemathics agrees with them.

## Zero Exponent
If a number is raised to the power of **zero**, the result is **one**.

\\( a^0 = 1 \\)
* \\( 5^0 = 1 \\)
* \\( 69.420^0 = 1 \\)

## Negative Exponent
If a number is raised to a negative power, also called as an inverse, it would
be equal to...

\\( a^{-b} = \dfrac{1}{a^b} \\)

## Fractional Exponent
**Denominator (y)** root of the **number (a)** to the power of the **Numerator (x)**.

\\( a^{\frac{x}{y}} = \sqrt[y]{a^x} \\)
* \\( 5^{\frac{1}{2}} = \sqrt[2]{5} \\)
* \\( 7^{\frac{2}{3}} = \sqrt[3]{7^2} \\)

# Exponential Equation
1. $$
\begin{aligned}
2^{x + 5} &= 64 \\\\
2^{x + 5} &= 2^6 &\leftarrow\textnormal{ you can change 64 into an exponented two (}2^x\textnormal{)} \\\\
x + 5 &= 6 &\textnormal{eliminate the 2s} \\\\
x &= 6 - 5 \\\\
&= 1
\end{aligned}
$$
1. $$
\begin{aligned}
16^{x + 2} &= 2^5 \\\\
(2^4)^{x + 2} &= 2^5 \\\\
2^{4x + 8} &= 2^5 \\\\
4x + 8 &= 5 \\\\
4x &= 5 - 8 \\\\
4x &= -3 \\\\
x &= -\dfrac{3}{4}
\end{aligned}
$$