1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
|
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<link rel="stylesheet" href="/style.css">
<link rel="icon" href="/assets/images/master.svg">
<title>Al Azhar 9th Grade Lesson Notes</title>
<link rel="apple-touch-icon" sizes="180x180" href="/apple-touch-icon.png">
<link rel="icon" type="image/png" sizes="32x32" href="/favicon-32x32.png">
<link rel="icon" type="image/png" sizes="16x16" href="/favicon-16x16.png">
<link rel="manifest" href="/site.webmanifest">
<script src="https://kit.fontawesome.com/d279a1f519.js" crossorigin="anonymous"></script>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/katex@0.16.8/dist/katex.css"
integrity="sha384-pRsDYiLLocCzWnUN/YEr9TBTTaZOUi5x8adKfqi6Qt44lDaFkoP++x1j2ohSMtdf" crossorigin="anonymous">
<script src="https://cdn.jsdelivr.net/npm/katex@0.16.8/dist/katex.js"
integrity="sha384-tMzugJpfLv7v0f+KXzNMqNCC6sVzLMM3sCnZDgzy0lcO/0h3sAkEBg/URFcV0JpE"
crossorigin="anonymous"></script>
</head>
<body>
<div class="fixed-top-btn-container" id="topbtn">
<a class="fixed-top-btn menu-btn" onclick="toggleNav()" href="javascript:void(0)"><i class="fa-solid fa-bars"></i></a>
<a href="../" class="fixed-top-btn back-btn"><i class="fa-solid fa-chevron-left"></i></a>
</div>
<div id="console"></div>
<div id="sidebar">
<div>
<a href="/index.html">
<img src="/assets/images/master.svg" alt="" class="sidebar-logo">
</a>
<h3 id="title" class="align-center">Al Azhar 9th Grade Lesson Notes</h3>
</div>
<div>
<a href="/about/author.html" class="sidebar-link link">About the Author</a>
<a href="/about/school.html" class="sidebar-link link">About School</a>
<a href="/lessons" class="sidebar-link link">Lessons</a>
<hr class="divider">
<div id="toc">
<h4>Table of Contents</h4>
</div>
</div>
</div>
<div class="banner-container" id="banner">
<div class="banner-bg" id="img-supplies"></div>
<div class="gradient-bg"></div>
<div class="banner-text-container">
<h1 class="banner-text" id="banner-txt">Root</h1>
<h3 class="banner-text" id="banner-txt">Chapter 1</h3>
</div>
</div>
<div class="chip-container" id="chip-container">
<div class="chip"><span>✅ Verified</span></div>
</div>
<div id="main">
<section>
<h1 id="definition">Definition</h1>
Root is the inverse of exponent. For example;<br>
<ul>
<li>4<sup>2</sup> = 16, <b>so <span class="sroot">16</span> = 4</b></li>
<li>5<sup>2</sup> = 25, <b>so <span class="sroot">25</span> = 5</b></li>
<li>10<sup>2</sup> = 100, <b>so <span class="sroot">100</span> = 10</b></li>
</ul>
<h1 id="simplification">Simplifying Square Roots</h1>
You can simplify a root by factoring the root number another number that is rational. Or in other words, divide the root number by the perfect squares. For example;
<ul>
<li>
<strong>Simplify <span class="sroot">60</span></strong><br>
<span class="sroot">60</span> = <span class="sroot">4 × 15</span> = 2<span class="sroot">15</span><br>
</li>
<li>
<strong>Simplify <span class="sroot">48</span></strong><br>
<span class="sroot">48</span> = <span class="sroot">16 × 3</span> = 4<span class="sroot">3</span><br>
</li>
<li>
<strong>Simplify <span class="sroot">125</span></strong><br>
<span class="sroot">125</span> = <span class="sroot">25 × 5</span> = 5<span class="sroot">5</span><br>
</li>
</ul>
<h1 id="root-operations">Root Operations</h1>
<h2 id="root-operations--addition">Addition</h2>
Roots with coefficient can be added with another coefficient that have the same roots. <br>
<strong>a<span class="sroot">c</span> + b<span class="sroot">c</span> = (a + b)<span class="sroot">c</span></strong>
<ul>
<li>3<span class="sroot">2</span> + 4<span class="sroot">2</span> = (3 + 4)<span class="sroot">2</span> = <strong>7<span class="sroot">2</span></strong></li>
<li><span class="sroot">5</span> + 3<span class="sroot">5</span> = (1 + 3)<span class="sroot">5</span> = <strong>4<span class="sroot">5</span></strong></li>
</ul>
<h2 id="root-operations--subtraction">Subtraction</h2>
Roots with coefficient can be subtracted with another coefficient that have the same roots. <br>
<strong>a<span class="sroot">c</span> - b<span class="sroot">c</span> = (a - b)<span class="sroot">c</span></strong>
<ul>
<li>7<span class="sroot">3</span> - 4<span class="sroot">3</span> = (7 - 4)<span class="sroot">3</span> = <strong>3<span class="sroot">2</span></strong></li>
<li>10<span class="sroot">6</span> - 5<span class="sroot">6</span> = (10 - 5)<span class="sroot">6</span> = <strong>5<span class="sroot">6</span></strong></li>
</ul>
<h2 id="root-operations--multiplication">Multiplication</h2>
Roots can be multiplied with any other roots. If the root is the same as the other multiplied root, the root can be deleted (if you want to be faster). <br>
<strong>a<span class="sroot">c</span> × b<span class="sroot">d</span> = (a × b)<span class="sroot">c × d</span></strong>
<ul>
<li><span class="sroot">2</span> × <span class="sroot">5</span> = <strong><span class="sroot">10</span></strong></li>
<li>3<span class="sroot">2</span> × 4<span class="sroot">3</span> = (3 × 4)<span class="sroot">2 × 3</span> = <strong>12<span class="sroot">6</span></strong></li>
<li>2<span class="sroot">5</span> × 3<span class="sroot">5</span> = (2 × 3)(5) = 6(5) = <strong>30</strong></li>
</ul>
<h2 id="root-operations--division">Division</h2>
Roots can be divided with any other roots. <br>
<strong>a<span class="sroot">c</span> ÷ b<span class="sroot">d</span> = (a ÷ b)<span class="sroot">c ÷ d</span></strong>
<ul>
<li>
8<span class="sroot">6</span> ÷ 4<span class="sroot">3</span> = (8 ÷ 4)<span class="sroot">6 ÷ 3</span> = <strong>2<span class="sroot">2</span></strong>
</li>
</ul>
<h2 id="rationalising">Rationalising Roots</h2>
<p>We can rationalise or simplify a fraction with a root denominator. To rationalise a root, multiply the fraction with a fraction of opposite roots. For example:</p>
<p><b>Example 1:</b></p>
<span id="id1"></span>
<script defer>
var element = document.getElementById("id1");
katex.render(String.raw`\dfrac{3}{\sqrt{5}}\\
= \dfrac{3}{\sqrt{5}} \times \dfrac{\sqrt{5}}{\sqrt{5}}\\
= \dfrac{3\sqrt{5}}{5}
`, element, {
throwOnError: false
});
</script>
<p><b>Example 2:</b></p>
<span id="id2"></span>
<script defer>
var element = document.getElementById("id2");
katex.render(String.raw`\dfrac{2}{3\sqrt{6}}\\
= \dfrac{2}{3\sqrt{6}} \times \dfrac{\sqrt{6}}{\sqrt{6}}\\
= \dfrac{2\sqrt{6}}{3 \cdot 6}\\
= \dfrac{2\sqrt{6}}{18}\\
= \dfrac{1}{9}\sqrt{6}
`, element, {
throwOnError: false
});
</script>
<p><b>Example 3:</b></p>
<span id="id3"></span>
<script defer>
var element = document.getElementById("id3");
katex.render(String.raw`\dfrac{8}{3 + \sqrt{7}}\\
= \dfrac{8}{3 + \sqrt{7}} \times \dfrac{3 - \sqrt{7}}{3 - \sqrt{7}}\\
= \dfrac{8(3 \cdot \sqrt{7})}{(3 \cdot \sqrt{7})(3 \cdot \sqrt{7})}\\
= \dfrac{8(3 \cdot \sqrt{7})}{9 - 3\sqrt{7} + 3\sqrt{7} - 7}\\
= \dfrac{8(3 \cdot \sqrt{7})}{9 - 7}\\
= \dfrac{8(3 \cdot \sqrt{7})}{2}
`, element, {
throwOnError: false
});
</script>
</section>
</div>
<script src="/scripts/toc.js"></script>
<script src="/scripts/onload/toc.js"></script>
<script src="/scripts/sidebar.js"></script>
</body>
</html>
|