summaryrefslogtreecommitdiff
path: root/lessons/matematika/1-exponents/1.md
blob: b8224b24a5281ca04c3586bba61189a39759ce81 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
# Exponents
\\( x^n = x_1 \times x_2 \times\ \cdot\cdot\cdot\ \times x_n \\)

## Examples
* \\(2^5 = 2 \times 2 \times 2 \times 2 \times 2 = 32 \\)
* \\(5^7 = 5 \times 5 \times 5 \times 5 \times 5 \times 5 \times 5 = 78125 \\)

# Exponent Operations
## Multiplication
If an exponented number is multiplied by another exponented number, the exponents would be summed together (instead of being multiplied)  

\\( a^x \times b^y = (a \times b)^{x + y} \\)
* \\( 10^4 \times 2^2 = (10 \times 2)^{4 + 2} = 20^6 \\)

## Division
If an exponented number is multiplied by another exponented number, the exponents would be subtracted together (instead of being divided)  

\\( a^x \div b^y = (a \div b)^{x - y} \\)
* \\( 10^3 \div 2^4 = (10 \div 2)^{(4 - 2)} = 5^2 = 25 \\)

## Exponent
If an exponented number is exponented, multiply the exponents together.  

\\( (a^x)^y = a^{x \times y} \\)
* \\( (2^2)^3 = 2^{2 \times 3} = 2^6 = 64 \\)

# Special Exponents
Some exponents feel better than the other, and Mathemathics agrees with them.

## Zero Exponent
If a number is raised to the power of **zero**, the result is **one**.

\\( a^0 = 1 \\)
* \\( 5^0 = 1 \\)
* \\( 69.420^0 = 1 \\)

## Negative Exponent
If a number is raised to a negative power, also called as an inverse, it would be equal to...

\\( a^{-b} = \dfrac{1}{a^b} \\)


## Fractional Exponent

# Examples

## Exponential Equation