Chapter 1 - Bentuk Pangkat dan Akar
- - - -Lesson 3: Exponents Extended - Scientific Form of Decimals
+ + + +Lesson 3: Exponents Extended - Scientific Form of Decimals
+From dc88212c7fbbab7f017d444954413d0abbfdc4b0 Mon Sep 17 00:00:00 2001
From: altaf-creator Lesson 3: Exponents Extended - Scientific Form of Decimals Lesson 3: Exponents Extended - Scientific Form of Decimals x y⁄z =
- zxyUnit Conversions (for Coulomb)
Example
diff --git a/lessons/index.html b/lessons/index.html
index 76d0727..a2f6dd4 100644
--- a/lessons/index.html
+++ b/lessons/index.html
@@ -54,131 +54,117 @@
Chapter 1 - Bentuk Pangkat dan Akar
-
-
-
- Chapter 2 - Quadratic Equation
+
Definition
Root is the inverse of exponent. For example;
-
Simplifying Square Roots
You can simplify a root by factoring the root number another number that is rational. Or in other words, divide the root number by the perfect squares. For example;
- 60 = 4 × 15 = 215
+ Simplify 60
+ 60 = 4 × 15 = 215
- 48 = 16 × 3 = 43
+ Simplify 48
+ 48 = 16 × 3 = 43
- 125 = 25 × 5 = 55
+ Simplify 125
+ 125 = 25 × 5 = 55
Root Operations
Addition
Roots with coefficient can be added with another coefficient that have the same roots.
- ac + bc = (a + b)c
+ ac + bc = (a + b)c
-
Subtraction
Roots with coefficient can be subtracted with another coefficient that have the same roots.
- ac - bc = (a - b)c
+ ac - bc = (a - b)c
-
Multiplication
Roots can be multiplied with any other roots. If the root is the same as the other multiplied root, the root can be deleted (if you want to be faster).
- ac × bd = (a × b)c × d
+ ac × bd = (a × b)c × d
-
Division
Roots can be divided with any other roots.
- ac ÷ bd = (a ÷ b)c ÷ d
+ ac ÷ bd = (a ÷ b)c ÷ d
diff --git a/lessons/matematika/pangkat-akar/latihan.html b/lessons/matematika/pangkat-akar/latihan.html
index a019254..701a456 100644
--- a/lessons/matematika/pangkat-akar/latihan.html
+++ b/lessons/matematika/pangkat-akar/latihan.html
@@ -63,13 +63,13 @@
Pangkat
Merasionalkan Akar
- Operasi Pangkat
- = 64 + 381
- = 8 + 381
+ = 64 + 381
+ = 8 + 381
- = 65 + 320
- = 65 + 34 × 5
- = 65 + 322 × 5
- = 65 + 3 × 25
- = 65 + 65
- = 125
+ 25 + 320 - 45
+ = 65 + 320
+ = 65 + 34 × 5
+ = 65 + 322 × 5
+ = 65 + 3 × 25
+ = 65 + 65
+ = 125
- = 4⁄5 × 5⁄5 = 45⁄5
+ 4⁄5
+ = 4⁄5 × 5⁄5 = 45⁄5
- = 35⁄23 × 3⁄3
- = 315⁄2 × 3
- = 15⁄2
+ 35⁄23
+ = 35⁄23 × 3⁄3
+ = 315⁄2 × 3
+ = 15⁄2
- = 5⁄3 - 2 × 3 + 2⁄3 + 2
- = 5(3 + 2)⁄(3)2 - (2)2
- = 5(3 + 2)⁄3 - 2 = 5(3 + 2)⁄1
- = 5(3 + 2)
+ 5⁄3 - 2
+ = 5⁄3 - 2 × 3 + 2⁄3 + 2
+ = 5(3 + 2)⁄(3)2 - (2)2
+ = 5(3 + 2)⁄3 - 2 = 5(3 + 2)⁄1
+ = 5(3 + 2)
- = 5 - 7⁄5 - 2 × 5 + 2⁄5 + 2
- = (5 - 7) × (5 + 2)⁄(5)2 - (2)2
- = 5 + 10 - 35 - 14⁄5 - 2 = 5 + 10 - 35 - 14⁄3
+ 5 - 7⁄5 - 2
+ = 5 - 7⁄5 - 2 × 5 + 2⁄5 + 2
+ = (5 - 7) × (5 + 2)⁄(5)2 - (2)2
+ = 5 + 10 - 35 - 14⁄5 - 2 = 5 + 10 - 35 - 14⁄3
diff --git a/lessons/matematika/pangkat-akar/pangkat.html b/lessons/matematika/pangkat-akar/pangkat.html
index 4061c82..7c7ccce 100644
--- a/lessons/matematika/pangkat-akar/pangkat.html
+++ b/lessons/matematika/pangkat-akar/pangkat.html
@@ -103,15 +103,15 @@
Fractional Exponent
Small Note: 2x or x menans square root. The 2 before root should be removed. The 2 is only present for easier purposes.
3x means cubic root.
Small Note: 2x or x menans square root. The 2 before root should be removed. The 2 is only present for easier purposes.
3x means cubic root.
+ a, b, c = known numbers, where a ≠ 0
+ x = the unknown, or the root
+
+
+
+ Factors: 2, 4
+
This is an algebraic expression → . You can turn that into a quadratic equation.
+ + +You can use the formula below to find a Quadratic Equation with 2 roots.
+ , where x1, 2 are the roots.
+ Example:
+
+
Diketahui persamaan kuadrat , memiliki akar-akar persamaan kuadrat x1 dan x2. Jika x1 < x2, maka tentukan: +