From 7420ea9926c6cca698efa670d837a1cd753c4931 Mon Sep 17 00:00:00 2001 From: altaf-creator Date: Mon, 25 Sep 2023 06:13:47 +0700 Subject: Lockdown site --- lessons/matematika/index.html | 68 ----- lessons/matematika/locked.html | 58 ----- lessons/matematika/pangkat-akar/akar.html | 124 --------- lessons/matematika/pangkat-akar/latihan.html | 167 ------------- lessons/matematika/pangkat-akar/pangkat.html | 139 ----------- lessons/matematika/pangkat-akar/scientific.html | 69 ----- .../quadratic-equation/finding-suitable.html | 117 --------- lessons/matematika/quadratic-equation/index.html | 277 --------------------- 8 files changed, 1019 deletions(-) delete mode 100644 lessons/matematika/index.html delete mode 100644 lessons/matematika/locked.html delete mode 100644 lessons/matematika/pangkat-akar/akar.html delete mode 100644 lessons/matematika/pangkat-akar/latihan.html delete mode 100644 lessons/matematika/pangkat-akar/pangkat.html delete mode 100644 lessons/matematika/pangkat-akar/scientific.html delete mode 100644 lessons/matematika/quadratic-equation/finding-suitable.html delete mode 100644 lessons/matematika/quadratic-equation/index.html (limited to 'lessons/matematika') diff --git a/lessons/matematika/index.html b/lessons/matematika/index.html deleted file mode 100644 index dad3177..0000000 --- a/lessons/matematika/index.html +++ /dev/null @@ -1,68 +0,0 @@ - - - - - - - - - Al Azhar 9th Grade Lesson Notes - - - - - - - -
- - -
-
- - - - -
-
-

Chapter 1 - Bentuk Pangkat dan Akar

-

Lesson 1: Exponent

-

Lesson 2: Root

-

Exercise 1

-

Lesson 3: Exponents Extended - Scientific Form of Decimals

-

Chapter 2 - Quadratic Equation

-

Main Lesson: Quadratic Equation - The Introduction

-
-
- - - - - \ No newline at end of file diff --git a/lessons/matematika/locked.html b/lessons/matematika/locked.html deleted file mode 100644 index c6384ec..0000000 --- a/lessons/matematika/locked.html +++ /dev/null @@ -1,58 +0,0 @@ - - - - - - - - - Al Azhar 9th Grade Lesson Notes - - - - - - - -
- - -
-
- - - - -
-
-

This lesson is locked.

-
-
- - - - - \ No newline at end of file diff --git a/lessons/matematika/pangkat-akar/akar.html b/lessons/matematika/pangkat-akar/akar.html deleted file mode 100644 index e7505de..0000000 --- a/lessons/matematika/pangkat-akar/akar.html +++ /dev/null @@ -1,124 +0,0 @@ - - - - - - - - - - Al Azhar 9th Grade Lesson Notes - - - - - - - - -
- - -
-
- - - - -
-
✅ Verified
-
- -
-
-

Definition

- Root is the inverse of exponent. For example;
-
    -
  • 42 = 16, so 16 = 4
  • -
  • 52 = 25, so 25 = 5
  • -
  • 102 = 100, so 100 = 10
  • -
- -

Simplifying Square Roots

- You can simplify a root by factoring the root number another number that is rational. Or in other words, divide the root number by the perfect squares. For example; -
    -
  • - Simplify 60
    - 60 = 4 × 15 = 215
    -
  • -
  • - Simplify 48
    - 48 = 16 × 3 = 43
    -
  • -
  • - Simplify 125
    - 125 = 25 × 5 = 55
    -
  • -
- -

Root Operations

-

Addition

- Roots with coefficient can be added with another coefficient that have the same roots.
- ac + bc = (a + b)c -
    -
  • 32 + 42 = (3 + 4)2 = 72
  • -
  • 5 + 35 = (1 + 3)5 = 45
  • -
-

Subtraction

- Roots with coefficient can be subtracted with another coefficient that have the same roots.
- ac - bc = (a - b)c -
    -
  • 73 - 43 = (7 - 4)3 = 32
  • -
  • 106 - 56 = (10 - 5)6 = 56
  • -
-

Multiplication

- Roots can be multiplied with any other roots. If the root is the same as the other multiplied root, the root can be deleted (if you want to be faster).
- ac × bd = (a × b)c × d -
    -
  • 2 × 5 = 10
  • -
  • 32 × 43 = (3 × 4)2 × 3 = 126
  • -
  • 25 × 35 = (2 × 3)(5) = 6(5) = 30
  • -
-

Division

- Roots can be divided with any other roots.
- ac ÷ bd = (a ÷ b)c ÷ d -
    -
  • - 86 ÷ 43 = (8 ÷ 4)6 ÷ 3 = 22 -
  • -
-
-
- - - - - - \ No newline at end of file diff --git a/lessons/matematika/pangkat-akar/latihan.html b/lessons/matematika/pangkat-akar/latihan.html deleted file mode 100644 index 6bdae1d..0000000 --- a/lessons/matematika/pangkat-akar/latihan.html +++ /dev/null @@ -1,167 +0,0 @@ - - - - - - - - - - Al Azhar 9th Grade Lesson Notes - - - - - - - - -
- - -
-
- - - - -
-
❓ Unchecked
-
- -
-
-

Pertanyaan

-
    -

    Pangkat

    -
  1. 8p2q × 2pq3
  2. -
  3. 6412 + 8113
  4. -
  5. 25 + 320 - 45
  6. - -

    Merasionalkan Akar

    -
  7. 45
  8. -
  9. 3523
  10. -
  11. 53 - 2
  12. -
  13. 5 - 75 - 2
  14. - -

    Operasi Pangkat

    -
  15. (8p23)3 ÷ 2pq
  16. -
  17. (a13b13)6(a23b43)9
  18. - -

    Persamaan Pangkat

    -
  19. 2x + 8 = 64
  20. -
  21. 162x + 3 = 32
  22. -
-

Jawaban

-
    -
  1. 16p3q4
  2. -
  3. - 6412 + 8113
    - = 64 + 381
    - = 8 + 381 -
  4. -
  5. - 25 + 320 - 45
    - = 65 + 320
    - = 65 + 34 × 5
    - = 65 + 322 × 5
    - = 65 + 3 × 25
    - = 65 + 65
    - = 125
    -
  6. -
  7. - 45
    - = 45 × 55 = 455 -
  8. -
  9. - 3523
    - = 3523 × 33
    - = 3152 × 3
    - = 152 -
  10. -
  11. - 53 - 2
    - = 53 - 2 × 3 + 23 + 2
    - = 5(3 + 2)(3)2 - (2)2
    - = 5(3 + 2)3 - 2 = 5(3 + 2)1
    - = 5(3 + 2) -
  12. -
  13. - 5 - 75 - 2
    - = 5 - 75 - 2 × 5 + 25 + 2
    - = (5 - 7) × (5 + 2)(5)2 - (2)2
    - = 5 + 10 - 35 - 145 - 2 = 5 + 10 - 35 - 143 -
  14. -
  15. - (8p23)3 ÷ 2pq
    - = (24p2)3 ÷ 2pq
    - = 243 p6 ÷ 2pq
    - = 6912p5 ÷ q -
  16. -
  17. - = (a13b13)6(a23b43)9
    - = - (a13)6 (b13)6 - - (a23)9 (b43)9 -
    - = - a2 b2 - - a6 b12 -
    - = a-4 b-10 -
  18. -
  19. - 2x + 8 = 64
    - = 2x + 8 = 26
    - = x + 8 = 6
    - = x = 6 - 8
    - = x = -2 -
  20. -
  21. - 162x + 3 = 32
    - = (24)2x + 3 = 26
    - = 28x + 12 = 26
    - = 8x + 12 = 6
    - = 8x = 6 - 12
    - = 8x = 6
    - = x = -68
    - = x = -34 -
  22. -
-
-
- - - - - - \ No newline at end of file diff --git a/lessons/matematika/pangkat-akar/pangkat.html b/lessons/matematika/pangkat-akar/pangkat.html deleted file mode 100644 index 7293e93..0000000 --- a/lessons/matematika/pangkat-akar/pangkat.html +++ /dev/null @@ -1,139 +0,0 @@ - - - - - - - - - - Al Azhar 9th Grade Lesson Notes - - - - - - - - -
- - -
-
- - - - -
-
✅ Verified
-
- -
-
-

Exponents

- xn = x1 × x2 × ... × xn -

Examples

-
    -
  • 25 = 2 × 2 × 2 × 2 × 2 = 32
  • -
  • 57 = 5 × 5 × 5 × 5 × 5 × 5 × 5 = 78.125
  • -
-

Exponent Operations

-

Multiplication

- ax × by = (a × b)x + y -
    -
  • 104 × 22 = (10 × 2)4 + 2 = 206
  • -
-

Division

- ax ÷ by = (a ÷ b)x - y -
    -
  • 103 ÷ 24 = (10 ÷ 2)4 - 2 = 52
  • -
-

Exponent

- (ax)y = ax × y -
    -
  • (22)3 = 22 × 3 = 26 = 64
  • -
- -

Zero Exponent

-

a0 = 1

-

Examples

-
    -
  • 50 = 1
  • -
  • 70 = 1
  • -
  • 1000 = 1
  • -
  • 28,670 = 1
  • -
-

One Exponent

-

a1 = a

-

Examples

-
    -
  • 51 = 5
  • -
  • 71 = 7
  • -
  • 1001 = 100
  • -
  • 28,671 = 28,67
  • -
-

Fractional Exponent

- -

yz = - zxy

-

Examples

-
    -
  • 12 = - 25
  • -
  • 23 = - 372
  • -
-

Small Note: 2x or x menans square root. The 2 before root should be removed. The 2 is only present for easier purposes.
3x means cubic root.

- -

Exponential Equation

-
    -
  1. 2x + 5 = 64
    - = 2x + 5 = 26 ↖ ubah ke bentuk 2 berpangkat (2x)
    - = x + 5 = 6
    - = x = 1 -
  2. -
  3. 16x + 2 = 32
    - = (24)x + 2 = 25
    - = 24x + 8 = 25
    - = 4x + 8 = 5
    - = 4x = 5 - 8
    - = 4x = -3
    - = x = -34 = -34 -
  4. -
-
-
- - - - - - \ No newline at end of file diff --git a/lessons/matematika/pangkat-akar/scientific.html b/lessons/matematika/pangkat-akar/scientific.html deleted file mode 100644 index 9394f6e..0000000 --- a/lessons/matematika/pangkat-akar/scientific.html +++ /dev/null @@ -1,69 +0,0 @@ - - - - - - - - - - Al Azhar 9th Grade Lesson Notes - - - - - - - - -
- - -
-
- - - - -
-
🔍 Unfinished
-
- -
-
- -
-
- - - - - - \ No newline at end of file diff --git a/lessons/matematika/quadratic-equation/finding-suitable.html b/lessons/matematika/quadratic-equation/finding-suitable.html deleted file mode 100644 index 9e13f01..0000000 --- a/lessons/matematika/quadratic-equation/finding-suitable.html +++ /dev/null @@ -1,117 +0,0 @@ - - - - - - - - - - Al Azhar 9th Grade Lesson Notes - - - - - - - - - - -
- - -
-
- - - - -
-
❓ Unchecked by Professionals
-
- -
-
-

← Go back to Main Lesson

- Firstly, lets use this equation.
-
-

Step-by-step

-
    -
  1. Find the factors of c, which in this equation, c = 30.
  2. -
  3. The factors of 30 are: -
      -
    • 1, 30
    • -
    • 2, 15
    • -
    • 3, 10
    • -
    • 5, 6
    • -
    -
  4. -
  5. Lets define that the first and second factors are y1, 2. To find the suitable factors for the equation, you need to check if; -
      -
    • , and
    • -
    • -
    -
  6. -
  7. Check for each of the factors. We end up with 5 and 6.
  8. -
  9. So, the answer is 5 & 6
  10. -
-

← Go back to Main Lesson

- -
-
- - - - - - \ No newline at end of file diff --git a/lessons/matematika/quadratic-equation/index.html b/lessons/matematika/quadratic-equation/index.html deleted file mode 100644 index 288d0d9..0000000 --- a/lessons/matematika/quadratic-equation/index.html +++ /dev/null @@ -1,277 +0,0 @@ - - - - - - - - - - Al Azhar 9th Grade Lesson Notes - - - - - - - - - - -
- - -
-
- - - - -
-
❓ Unchecked by Professionals
-
- -
-
-

Introduction

- In algebra, a quadratic equation is any equation that can be rearranged in standard form as where x - represents an unknown value, and a, b, and c represent known numbers, where a ≠ 0.[1] -

Formula / Format

- ax2 + bx + c = 0 -

- a, b, c = known numbers, where a ≠ 0
- x = the unknown, or the root -

-

Exercises

-

Finding the roots with factorisation.

-
    -
  1. - -

    -


    - To find the answer, we need to find the factors of c that is suitable for b and c. What and how do I find the suitable factors?
    - The suitable factor for the equation are 2 and -3.
    - Then, insert each numbers to this formula: , where y is the factor.

    -

    -
    - So, the answer is -

    - -
  2. -
  3. -

    -
    - Factors: 2, 4
    -


    -
    -
    -
    -
    -

    - -
  4. -
-

Relation between Quadratic Equation and Algebraic Expressions

-

This is an algebraic expression → . You can turn that into a quadratic equation.

- - -

Quadratic Equation's Root Operations

-

Finding Quadratic Equation with Roots

-

You can use the formula below to find a Quadratic Equation with 2 roots.

- , where x1, 2 are the roots.
-

- Example:

- -

- -

Quadratic Root's Mathematical Operations

-

Formulas

-

-

-

Examples

-
    -
  1. -

    Diketahui persamaan kuadrat , memiliki akar-akar persamaan kuadrat x1 dan x2. Jika x1 < x2, maka tentukan: -

      -
    1. x1 + x2
    2. -
    3. x1 × x2
    4. -
    -

    -
    -
      -
    1. -
    2. -
    -
  2. -
- -

References

-
    -
  1. Quadratic Equation - The English Wikipedia, https://en.wikipedia.org/wiki/Quadratic_equation
  2. - -
-
- - - - - - \ No newline at end of file -- cgit v1.2.3