summaryrefslogtreecommitdiff
path: root/lessons/matematika/1-exponents/2-id.md
diff options
context:
space:
mode:
Diffstat (limited to 'lessons/matematika/1-exponents/2-id.md')
-rw-r--r--lessons/matematika/1-exponents/2-id.md177
1 files changed, 177 insertions, 0 deletions
diff --git a/lessons/matematika/1-exponents/2-id.md b/lessons/matematika/1-exponents/2-id.md
new file mode 100644
index 0000000..31453a9
--- /dev/null
+++ b/lessons/matematika/1-exponents/2-id.md
@@ -0,0 +1,177 @@
+# Definisi
+Sebuah akar merupakan kebalikan dari pangkat. Sebagai contoh:
+* \\( 4^2 = 16; \sqrt{16} = 4 \\)
+* \\( 5^2 = 25; \sqrt{25} = 5 \\)
+* \\( 3^3 = 27; \sqrt[3]{27} = 3 \\)
+
+# Menyederhanakan Akar Kuadrat
+Kamu dapat menyederhanakan sebuah akar dengan memfaktorkan dengan angka lain
+yang rasional. Dengan kata lain, membagi bilangan akar dengan kuadrat sempurna.
+Setelah itu, akar kuadrat sempurna itu.
+
+Sebagai contoh: **Sederhanakan** \\( \sqrt{60} \\)!
+\\( \sqrt{60} = \sqrt{4 \times 15} = 2\sqrt{15} \\)
+!---(
+#--(
+## 💡 Penjelasan terperinci
+)--#
+1. Kita faktorkan 60. Kita pilih faktor terkecil dengan kuadrat yang sempurna (cont. 4, 9, 16, 25).
+ Kita akan mendapatkan \\(4 \times 15 \\). Untuk membuktikannya, \\( 4
+ \times 15 \\) harus sama dengan 60. Dan itu benar!
+2. Lalu, akar kuadrat sempurnanya, dalam contoh ini, 4.
+ \\( \sqrt{4 \times 15} = 2\sqrt{15} \\)
+)---!
+Contoh lebih banyak:
+* \\( \sqrt{48} = \sqrt{16 \times 3} = 4\sqrt{3} \\)
+* \\( \sqrt{125} = \sqrt{25 \times 5} = 5\sqrt{5} \\)
+
+!---(
+#--(
+## ❕ Ada akar "sisa"!
+)--#
+Beberapa akar adalah **bilangan tidak rasional**. Bilangan tersebut adalah
+bilangan yang tidak bisa direpresentasikan dengan rasio atau pecahan.
+
+Kita tidak dapat menyederhanakan akar yang tidak rasional. Jadi, akar itu **sudah
+dalam bentuk paling sederhana**.
+)---!
+
+# Operasi Akar
+Pertama-tama, beberapa terminologi!
+1. Koefisien adalah pengali dari akar. Sebagai contoh: \\( 3\sqrt{2} \\); 3 adalah koefisiennya, dan 2 adalah bilangan akarnya.
+
+## Addition
+Root numbers with the same root can be summed together.
+
+\\( a\sqrt{c} + b\sqrt{c} = (a + b)\sqrt{c} \\)
+
+* \\( 3\sqrt{2} + 4\sqrt{2} = (3 + 4)\sqrt{2} = 7\sqrt2 \\)
+* \\( \sqrt5 + 3\sqrt5 = (1 + 3)\sqrt5 = 4\sqrt5 \\)
+
+## Subtraction
+Root numbers with the same root can be subtracted together.
+
+\\( a\sqrt{c} - b\sqrt{c} = (a - b)\sqrt{c} \\)
+
+* \\( 7\sqrt3 - 4\sqrt3 = (7-4)\sqrt3 = 3\sqrt2 \\)
+
+## Multiplication
+Root numbers can be multiplied by any other root numbers.
+
+\\( a\sqrt{c} \times b\sqrt{d} = (a \times b)\sqrt{c \times d} \\)
+
+!---(
+#--(
+## 💡 Tip
+)--#
+If you multiply a root number with another root number that has the same root,
+you can delete the root symbol, aka it becomes a regular number.
+For example:
+
+\\( \sqrt5 \times \sqrt5 = 5 \\)
+
+!---(
+#--(
+### ❓ Why?
+)--#
+Root is the inverse of exponent. If you multiply two numbers together with the
+same value, it is an exponent. If two of them meet together, they will fight
+and both of them dies (they will cancel out), which means it will be a regular
+ol' number.
+
+In this example:
+
+\\( \sqrt5 \times \sqrt5 = \sqrt{5^2} = 5 \\)
+* Here, \\( \sqrt{5} \\) was powered to 2, which cancels it out.
+ * **Why do they cancel out?** We can expand this equation even more.
+ \\( \sqrt5 \times \sqrt5 = \sqrt{5^2} = \sqrt{25} = 5 \\)
+ * \\( \sqrt{25} \\) is equal to 5, so the answer is 5.
+
+---
+
+This also works for every other number.
+
+---
+
+### In conclusion of these tips:
+* If a root is exponented, they will both cancel out. \\( \sqrt[x]{a^x} = a \\)
+ * Because of that, \\( \sqrt{a} \times \sqrt{a} = a \\)
+
+)---!
+)---!
+
+## Division
+Roots can be divided with any other roots.
+
+\\( a\sqrt{c} \div b\sqrt{d} = (a \div b)\sqrt{c \div d} \\)
+
+* \\( 8\sqrt6 \div 4\sqrt3 = (8 \div 4)\sqrt{6 \div 3} = 2\sqrt2 \\)
+
+# Rationalising Roots
+If a fraction has an **irrational** root as the denominator, we should rationalise it.
+
+!---(
+#--(
+## ❓ What? Why?
+)--#
+Usually in mathemathics, a fraction should have a rational number as the
+denominator. If you remember, some roots are **irrational**, like \\( \sqrt2
+\\), \\( \sqrt3 \\), \\( \sqrt 5 \\). They cannot be represented as integers or
+a valid fraction.
+
+You don't have to rationalise a root, but it is widely accepted that the
+denominator is a rational number.
+)---!
+
+Let's learn how to rationalise a root.
+
+## Simple Irrational Fraction
+If you have a simple irrational fraction like this:
+
+\\( \dfrac{1}{\sqrt2} \\)
+
+You can rationalise it by multiplying it with its own denominator. If you
+remember correctly, when you multiply a square root with itself, it will return
+its own number, therefore a rational number!
+
+\\( \dfrac{1}{\sqrt2} \cdot \dfrac{\sqrt2}{\sqrt2} = \sqrt{1\sqrt2}{2} \\)
+
+The value is still (and must be!) the same, rationalising roots are basically
+representing numbers in another way.
+
+### More Examples
+* \\( \dfrac{3}{\sqrt5} \cdot \dfrac{\sqrt5}{\sqrt5} = \dfrac{3\sqrt5}{5} \\)
+* \\( \dfrac{2}{3\sqrt6} \cdot \dfrac{\sqrt6}{\sqrt6} = \dfrac{2\sqrt6}{3 \cdot 6} = \dfrac{2\sqrt6}{18} \\) (you don't need to multiply it with \\( 3\sqrt6\\))
+
+## A little bit more complex fractions
+If you have a fraction like this:
+
+\\( \dfrac{5}{3 + \sqrt2} \\)
+
+You can rationalise it by multiplying it with itself, but invert the signs. Like this:
+
+\\( \dfrac{5}{3 + \sqrt2} \cdot \dfrac{3 - \sqrt2}{3 - \sqrt2} \\)
+\\( \dfrac{5 \cdot (3 - \sqrt2)}{(3 + \sqrt2)(3 - \sqrt2)} \\)
+
+!---(
+#--(
+### ❓ Looks familiar?
+)--#
+If you look closely, \\( (3 + \sqrt2)(3 - \sqrt2) \\) is the same pattern as
+\\( (a + b)(a - b) \\)! This pattern is one of the **special binominal
+products**. We use this a lot in algebra.
+
+So, remember this pattern:
+\\( (a + b)(a - b) = a^2 - b^2 \\)
+)---!
+
+Let's continue.
+
+\\( \dfrac{5 \cdot (3 - \sqrt2)}{(3 + \sqrt2)(3 - \sqrt2)} = \dfrac{5(3 - \sqrt2)}{3^2 - \sqrt{2^2}} \\)
+
+And if you remember correctly, \\( \sqrt{a^2} = a \\). So,
+
+\\( \dfrac{5(3 - \sqrt2)}{3^2 - \sqrt{2^2}} = \dfrac{5(3 - \sqrt2)}{9 - 2}\\)
+\\( = \dfrac{5(3 - \sqrt2)}{6}\\)
+
+And that's how you rationalise complex fractions.